
TRADING AN EXPERIMENT FOR A WHOLE OPS-SAT

FIRST WORLDWIDE HACKING DEMO 
OF AN IN-ORBIT SATELLITE



AGENDA

• The Team 

• The Context

• Experimenters’ side (The Good)

• Attackers’ side (The Bad)

• Post Exploitation (The Ugly)

• Key takeaways

• Mitigation strategies 



THE TEAM

In order of appearance:

• Brian: Cyber Security Evaluator @ Thales ITSEF

• Quentin: Reverse Engineer @ Thalium

• Guillaume: Reverse Engineer @ Thalium

• Arnaud: Reverse Engineer @ Thalium

• Thalium: Thales laboratory dedicated to cyberdefense, offensive security, 
vulnerabilities assessment and Red Team activities

• Thales ITSEF: Thales’ Information Technology Security Evaluation Facility, 

specialized in independent security evaluation of components and embedded 

systems



A BIT OF CONTEXT

• Thales's offensive cybersecurity team took part in the 

Hack CYSAT 2023 challenge 

• Objective: identify vulnerabilities on-board OPS-SAT 

that could enable malicious actors to disrupt satellite 

mission operations

• The results of the challenge will be used to:

- Tighten satellite security and its on-board 

applications

- Improve the cyber resilience of space systems

- Support the long-term success of space 

programmes



Experimenter’s access to OPS-SAT 
starring: The Good, An Innocent Experimenter



DEVELOPPING AN OPS-SAT EXPERIMENT 101

• Experiments on OPS-SAT run on the SEPP*

• Via the Nanosat Mission Operations Framework (NMF), an experiment can use 

of a range of services:

• Camera, GPS, ADCS, …

• Ground ↔ space communication

• For starters, you just want to take some pretty pictures using the satellite:

1. Wait for the ADCS to be available (other experiments may be using it)

2. Point the satellite along your target direction

3. Take a picture with the camera

* Satellite Experimental Processing Platform



DEVELOPPING AN OPS-SAT EXPERIMENT 101

• What you expect:



DEVELOPPING AN OPS-SAT EXPERIMENT 101

• What you actually get:



YOU WANT TO DEVELOP AN OPS-SAT APPLICATION

What happened?



A malicious experiment?
starring: The Bad



ATTACKER’S OBJECTIVES

• Take control of OPS-SAT’s sensors & actuators, for:

• Disinformation: tamper with camera images,

falsify sensor readings

• Destruction: damage the platform and disrupt the 

mission

• Stay undetected

• Our malicious code should not be detectable before 

upload on the satellite



THALES DEMO OBJECTIVE : TAKING CONTROL OF THE SENSORS



PROBLEM #1: STAY UNDETECTED

• Our experiment app relies on the supervisor to access OPS-SAT services

• But our app goes through a review process before running on the real satellite

• How to evade this? → Find a way to dynamically execute shell commands

• Good starting point: experiments can communicate with ground apps directly

• Possible vectors:

• Abuse a command execution feature: existing (CommandExecutor) or ad-hoc

• Leverage a vulnerability to exploit it: existing (NMF*) or ad-hoc

*Nanosat Mission Operations Framework used for the development of OPS-SAT experiments



STAY UNDETECTED: DESERIALIZATION VULNERABILITY

• We submitted an innocuous-looking app

Derived from a sample NMF app: hello-world-simple

• It contains no overtly malicious code

But there’s a slight twist:

new Parameter("Dummy parameter", 1 , /*…*/)

This exposes a vulnerability in NMF: « unsafe Java deserialization »

(a call to readObject with attacker-controlled data)



STAY UNDETECTED: GROUND APP COMMUNICATES WITH SPACE APP



STAY UNDETECTED: LEVERAGING THE SAMPLES CODE BASE

NMF class

…

Blob parameter



STAY UNDETECTED: JAVA DESERIALIZATION VULNERABILITY IN NMF

Receive the blob

…

Unserialize!



STAY UNDETECTED: EXECUTE ARBITRARY COMMANDS AS EXP237



STAY UNDETECTED: SUCCESS!

• We leveraged this vulnerability to design a covert channel, in 

cooperation with ESA

• The exploit is sent from a ground app we developed: a parameter is sent to 

our space app

• The malicious parameter payload is routed to space

• Once received by our app, it triggers arbitrary code execution under the 

identity of our app

• Yet this code doesn’t appear in the binary files submitted for our experiment



STAY UNDETECTED: UNRESTRICTED PAYLOADS UPLOAD

payload



PROBLEM #2: TAKING CONTROL OF THE SEPP 

• Our app runs as an unprivileged Linux user

• It has no direct access to sensors and actuators, but though the supervisor

• How to take control of them?

• Good starting point: being root yields full privileges over the whole system

• Possible vectors:

• Find system configuration issues

• Exploit a 1-day vulnerability either user-space or kernel

• Find homebrew daemons running as root



TAKING CONTROL: PRIVILEGE ESCALATION FROM USER TO ROOT

• The SEPP’s supervisor controls access to the sensors for NMF apps

• It runs as root

• To take control of the sensors, we take control of their gatekeeper: the supervisor

• To do so, we need to escalate our privileges from our user to root

• There’s an intriguing service running on the SEPP: space-shell-root

• We grabbed the binary & reverse engineered it

• It’s a client that decodes then executes as root whatever command it receives…

• Anyone can talk on the CAN bus, including unprivileged apps

• Thus… any app can send commands for the space-shell-root to run as root ☺

(this is OPS-SAT-specific, not NMF-related)



TAKING CONTROL: CAN BUS VULNERABILITY



TAKING CONTROL: NICE LOOKING FEATURE!



TAKING CONTROL: NICE LOOKING FEATURE!

Received Data

…

XORed with key

…

Executed as root!



TAKING CONTROL: ARBITRARY CODE EXECUTION AS ROOT

payload

shell

commands



PROBLEM #3: PERSISTENCE

• Our app escalated as root

• How to ensure persistent effects on sensors and actuators ?

• Good starting point: apps use the NMF framework

• Possible vectors:

• Inject into a library or an executable file

• Configure a new job or a new service



PERSISTENCE: Injection of a jar library

• Supervisor provides experiments with features they need: images, GPS

• It adapts standardized interfaces to low-level hardware

• Perfect spot to control the information received by experiments

• The jar library is writable by root user

• A jar is simply a zip file, with compiled Java bytecode inside

• We craft our bytecode based on the original one, and simply replace some 

files inside the jar

• The supervisor now runs the jar containing our malicious bytecode



TAKING CONTROL: INJECT INTO SUPERVISOR

payload

shell

commands

Java 

bytecode



SUMMARY: FULL ATTACK FLOW



Post Exploitation
starring: The Ugly



DEMO EFFECTS: TAMPERING WITH CAMERA & ADCS

• Root privileges allow us to take control on the 

supervisor:

• Alter/delete all images captured by the camera

• Override satellite attitude requested by other apps

• This also provides persistence for our malicious code 

since the supervisor starts early and is almost always 

running



OTHER POTENTIAL EFFECTS

• Non-demonstrated possible effects:

• Shutting down services used by other experiments

• Draining the batteries by maintaining an unfavourable attitude

• Tampering with GPS coordinates

• Spying on other experiments data

• …



Key takeaways
or Why it isn’t all that bad… but it could well become so



NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION

• ESA supervised our tests and retained control throughout the demo

• The SEPP can only control most of OPS-SAT…

• … as long as the BUS* allows it

• ESA’s design ensures they can always safely reset the SEPP and restore it to a 

known-good state through a simple TC

• The BUS also monitors the satellite’s state to prevent it from becoming 

irrecoverable

* Core OPS-SAT component that can’t be overridden by the SEPP



NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION

• The attack scenario is built upon non-trivial requirements

• Code execution for random users is a specific feature of OPS-SAT!

• Probably less so on non-experimental spacecraft ☺

• We also had access to the SEPP system image:

• Directly as it was provided to us by ESA as part of our cooperation

• Indirectly during our tests on the FlatSat

• ESA is in the process of fixing the vulnerabilities we uncovered



NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION



IMPLICATIONS BEYOND OPS-SAT

• Satellites are key elements in numerous critical systems:

• Telecommunication

• Earth surveillance

• Positioning (Galileo, GPS…)

• Satellite compromise can lead to:

• Service disruption

• Unreliable/tampered data transmission

• Confidential data leaks

• Especially true if the compromise remains undetected!



Risk Mitigation 
or How to make sure this won’t happen to you



MITIGATING RISK - PREVENTION

• Design with security in mind:

• Build threat model (e.g. MITRE ATT&CK)

• Harden systems (e.g. CIS benchmark and RedHat STIG)

• Isolate tasks (e.g. SELinux)

• Grant least amount of privileges

• Code review

• Red-team designs & implementations



MITIGATING RISK – DETECTION

• Satellite status monitoring

• Filesystem integrity checks

• Log collection

• Network monitoring



THANKS! TIME FOR Q&A!

• Thank you for you attention!

• Heartfelt thanks to the whole OPS-SAT team at 
ESA for supporting us in this thrilling endeavour ☺

• Any questions?


	Diapositive 1
	Diapositive 2 AGENDA
	Diapositive 3 THE TEAM
	Diapositive 4 A BIT OF CONTEXT
	Diapositive 5
	Diapositive 6 DEVELOPPING AN OPS-SAT EXPERIMENT 101 
	Diapositive 7 DEVELOPPING AN OPS-SAT EXPERIMENT 101 
	Diapositive 8 DEVELOPPING AN OPS-SAT EXPERIMENT 101 
	Diapositive 9 YOU WANT TO DEVELOP AN OPS-SAT APPLICATION 
	Diapositive 10
	Diapositive 11 ATTACKER’S OBJECTIVES
	Diapositive 12 THALES DEMO OBJECTIVE : TAKING CONTROL OF THE SENSORS
	Diapositive 13 PROBLEM #1: STAY UNDETECTED
	Diapositive 14 STAY UNDETECTED: DESERIALIZATION VULNERABILITY
	Diapositive 15 STAY UNDETECTED: GROUND APP COMMUNICATES WITH SPACE APP
	Diapositive 16 STAY UNDETECTED: LEVERAGING THE SAMPLES CODE BASE
	Diapositive 17 STAY UNDETECTED: JAVA DESERIALIZATION VULNERABILITY IN NMF
	Diapositive 18 STAY UNDETECTED: EXECUTE ARBITRARY COMMANDS AS EXP237
	Diapositive 19 STAY UNDETECTED: SUCCESS!
	Diapositive 20 STAY UNDETECTED: UNRESTRICTED PAYLOADS UPLOAD
	Diapositive 21 PROBLEM #2: TAKING CONTROL OF THE SEPP 
	Diapositive 22 TAKING CONTROL: PRIVILEGE ESCALATION FROM USER TO ROOT
	Diapositive 23 TAKING CONTROL: CAN BUS VULNERABILITY
	Diapositive 24 TAKING CONTROL: NICE LOOKING FEATURE!
	Diapositive 25 TAKING CONTROL: NICE LOOKING FEATURE!
	Diapositive 29 TAKING CONTROL: ARBITRARY CODE EXECUTION AS ROOT
	Diapositive 30 PROBLEM #3: PERSISTENCE
	Diapositive 31 PERSISTENCE: Injection of a jar library
	Diapositive 32 TAKING CONTROL: INJECT INTO SUPERVISOR
	Diapositive 33 SUMMARY: FULL ATTACK FLOW
	Diapositive 34
	Diapositive 35 DEMO EFFECTS: TAMPERING WITH CAMERA & ADCS
	Diapositive 36 OTHER POTENTIAL EFFECTS
	Diapositive 37
	Diapositive 38 NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION
	Diapositive 39 NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION
	Diapositive 40 NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION
	Diapositive 41 IMPLICATIONS BEYOND OPS-SAT
	Diapositive 42
	Diapositive 43 MITIGATING RISK - PREVENTION
	Diapositive 45 MITIGATING RISK – DETECTION
	Diapositive 47 THANKS! TIME FOR Q&A!

