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THE TEAM

In order of appearance:

• Brian: Cyber Security Evaluator @ Thales ITSEF

• Quentin: Reverse Engineer @ Thalium

• Guillaume: Reverse Engineer @ Thalium

• Arnaud: Reverse Engineer @ Thalium

• Thalium: Thales laboratory dedicated to cyberdefense, offensive security, 
vulnerabilities assessment and Red Team activities

• Thales ITSEF: Thales’ Information Technology Security Evaluation Facility, 

specialized in independent security evaluation of components and embedded 

systems



A BIT OF CONTEXT

• Thales's offensive cybersecurity team took part in the 

Hack CYSAT 2023 challenge 

• Objective: identify vulnerabilities on-board OPS-SAT 

that could enable malicious actors to disrupt satellite 

mission operations

• The results of the challenge will be used to:

- Tighten satellite security and its on-board 

applications

- Improve the cyber resilience of space systems

- Support the long-term success of space 

programmes



Experimenter’s access to OPS-SAT 
starring: The Good, An Innocent Experimenter



DEVELOPPING AN OPS-SAT EXPERIMENT 101

• Experiments on OPS-SAT run on the SEPP*

• Via the Nanosat Mission Operations Framework (NMF), an experiment can use 

of a range of services:

• Camera, GPS, ADCS, …

• Ground ↔ space communication

• For starters, you just want to take some pretty pictures using the satellite:

1. Wait for the ADCS to be available (other experiments may be using it)

2. Point the satellite along your target direction

3. Take a picture with the camera

* Satellite Experimental Processing Platform



DEVELOPPING AN OPS-SAT EXPERIMENT 101

• What you expect:



DEVELOPPING AN OPS-SAT EXPERIMENT 101

• What you actually get:



YOU WANT TO DEVELOP AN OPS-SAT APPLICATION

What happened?



A malicious experiment?
starring: The Bad



ATTACKER’S OBJECTIVES

• Take control of OPS-SAT’s sensors & actuators, for:

• Disinformation: tamper with camera images,

falsify sensor readings

• Destruction: damage the platform and disrupt the 

mission

• Stay undetected

• Our malicious code should not be detectable before 

upload on the satellite



THALES DEMO OBJECTIVE : TAKING CONTROL OF THE SENSORS



PROBLEM #1: STAY UNDETECTED

• Our experiment app relies on the supervisor to access OPS-SAT services

• But our app goes through a review process before running on the real satellite

• How to evade this? → Find a way to dynamically execute shell commands

• Good starting point: experiments can communicate with ground apps directly

• Possible vectors:

• Abuse a command execution feature: existing (CommandExecutor) or ad-hoc

• Leverage a vulnerability to exploit it: existing (NMF*) or ad-hoc

*Nanosat Mission Operations Framework used for the development of OPS-SAT experiments



STAY UNDETECTED: DESERIALIZATION VULNERABILITY

• We submitted an innocuous-looking app

Derived from a sample NMF app: hello-world-simple

• It contains no overtly malicious code

But there’s a slight twist:

new Parameter("Dummy parameter", 1 , /*…*/)

This exposes a vulnerability in NMF: « unsafe Java deserialization »

(a call to readObject with attacker-controlled data)



STAY UNDETECTED: GROUND APP COMMUNICATES WITH SPACE APP



STAY UNDETECTED: LEVERAGING THE SAMPLES CODE BASE

NMF class

…

Blob parameter



STAY UNDETECTED: JAVA DESERIALIZATION VULNERABILITY IN NMF

Receive the blob

…

Unserialize!



STAY UNDETECTED: EXECUTE ARBITRARY COMMANDS AS EXP237



STAY UNDETECTED: SUCCESS!

• We leveraged this vulnerability to design a covert channel, in 

cooperation with ESA

• The exploit is sent from a ground app we developed: a parameter is sent to 

our space app

• The malicious parameter payload is routed to space

• Once received by our app, it triggers arbitrary code execution under the 

identity of our app

• Yet this code doesn’t appear in the binary files submitted for our experiment



STAY UNDETECTED: UNRESTRICTED PAYLOADS UPLOAD

payload



PROBLEM #2: TAKING CONTROL OF THE SEPP 

• Our app runs as an unprivileged Linux user

• It has no direct access to sensors and actuators, but though the supervisor

• How to take control of them?

• Good starting point: being root yields full privileges over the whole system

• Possible vectors:

• Find system configuration issues

• Exploit a 1-day vulnerability either user-space or kernel

• Find homebrew daemons running as root



TAKING CONTROL: PRIVILEGE ESCALATION FROM USER TO ROOT

• The SEPP’s supervisor controls access to the sensors for NMF apps

• It runs as root

• To take control of the sensors, we take control of their gatekeeper: the supervisor

• To do so, we need to escalate our privileges from our user to root

• There’s an intriguing service running on the SEPP: space-shell-root

• We grabbed the binary & reverse engineered it

• It’s a client that decodes then executes as root whatever command it receives…

• Anyone can talk on the CAN bus, including unprivileged apps

• Thus… any app can send commands for the space-shell-root to run as root ☺

(this is OPS-SAT-specific, not NMF-related)



TAKING CONTROL: CAN BUS VULNERABILITY



TAKING CONTROL: NICE LOOKING FEATURE!



TAKING CONTROL: NICE LOOKING FEATURE!

Received Data

…

XORed with key

…

Executed as root!



TAKING CONTROL: ARBITRARY CODE EXECUTION AS ROOT

payload

shell

commands



PROBLEM #3: PERSISTENCE

• Our app escalated as root

• How to ensure persistent effects on sensors and actuators ?

• Good starting point: apps use the NMF framework

• Possible vectors:

• Inject into a library or an executable file

• Configure a new job or a new service



PERSISTENCE: Injection of a jar library

• Supervisor provides experiments with features they need: images, GPS

• It adapts standardized interfaces to low-level hardware

• Perfect spot to control the information received by experiments

• The jar library is writable by root user

• A jar is simply a zip file, with compiled Java bytecode inside

• We craft our bytecode based on the original one, and simply replace some 

files inside the jar

• The supervisor now runs the jar containing our malicious bytecode



TAKING CONTROL: INJECT INTO SUPERVISOR

payload

shell

commands

Java 

bytecode



SUMMARY: FULL ATTACK FLOW



Post Exploitation
starring: The Ugly



DEMO EFFECTS: TAMPERING WITH CAMERA & ADCS

• Root privileges allow us to take control on the 

supervisor:

• Alter/delete all images captured by the camera

• Override satellite attitude requested by other apps

• This also provides persistence for our malicious code 

since the supervisor starts early and is almost always 

running



OTHER POTENTIAL EFFECTS

• Non-demonstrated possible effects:

• Shutting down services used by other experiments

• Draining the batteries by maintaining an unfavourable attitude

• Tampering with GPS coordinates

• Spying on other experiments data

• …



Key takeaways
or Why it isn’t all that bad… but it could well become so



NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION

• ESA supervised our tests and retained control throughout the demo

• The SEPP can only control most of OPS-SAT…

• … as long as the BUS* allows it

• ESA’s design ensures they can always safely reset the SEPP and restore it to a 

known-good state through a simple TC

• The BUS also monitors the satellite’s state to prevent it from becoming 

irrecoverable

* Core OPS-SAT component that can’t be overridden by the SEPP



NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION

• The attack scenario is built upon non-trivial requirements

• Code execution for random users is a specific feature of OPS-SAT!

• Probably less so on non-experimental spacecraft ☺

• We also had access to the SEPP system image:

• Directly as it was provided to us by ESA as part of our cooperation

• Indirectly during our tests on the FlatSat

• ESA is in the process of fixing the vulnerabilities we uncovered



NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION



IMPLICATIONS BEYOND OPS-SAT

• Satellites are key elements in numerous critical systems:

• Telecommunication

• Earth surveillance

• Positioning (Galileo, GPS…)

• Satellite compromise can lead to:

• Service disruption

• Unreliable/tampered data transmission

• Confidential data leaks

• Especially true if the compromise remains undetected!



Risk Mitigation 
or How to make sure this won’t happen to you



MITIGATING RISK - PREVENTION

• Design with security in mind:

• Build threat model (e.g. MITRE ATT&CK)

• Harden systems (e.g. CIS benchmark and RedHat STIG)

• Isolate tasks (e.g. SELinux)

• Grant least amount of privileges

• Code review

• Red-team designs & implementations



MITIGATING RISK – DETECTION

• Satellite status monitoring

• Filesystem integrity checks

• Log collection

• Network monitoring



THANKS! TIME FOR Q&A!

• Thank you for you attention!

• Heartfelt thanks to the whole OPS-SAT team at 
ESA for supporting us in this thrilling endeavour ☺

• Any questions?
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