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FIRST WORLDWIDE HACKING DEMO
OF AN IN-ORBIT SATELLITE

TRADING AN EXPERIMENT FOR A WHOLE OPS-SAT




< AGENDA >

The Team
The Context .
Experimenters’ side (The Good) Ee e ‘
Attackers’ side (The Bad)
Post Exploitation (The Ugly)

~

Key takeaways

Mitigation strategies
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( THE TEAM >

In order of appearance:

~

Brian: Cyber Security Evaluator @ Thales ITSEF

-

Quentin: Reverse Engineer @ Thalium

Guillaume: Reverse Engineer @ Thalium - : o ‘

Arnaud: Reverse Engineer @ Thalium ‘4 .- ) f'

Thalium: Thales laboratory dedicated to cyberdefense offenslve secunTy
vulnerabilities assessment and Red Team activities O e '

Thales ITSEF: Thales' Information Technology Security Evaluation Facility,
specialized in independent security evaluation of components and embedded
systems
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< A BIT OF CONTEXT >

Thales's offensive cybersecurity team took part in the
Hack CYSAT 2023 challenge -

Objective: identify vulnerabilities on-board OPS-SAT
that could enable malicious actors to disrupt so’relh’re ’
mission operations

The results of the challenge will be used to:

- Tighten satellite security and its on-board
applications

- Improve the cyber resilience of space systems

- Support the long-term success of space
programmes
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Experimenter’'s access to OPS-SAT
starring: The Good, An Innocent Experimente




( DEVELOPPING AN OPS-SAT EXPERIMENT 101 >

Experiments on OPS-SAT run on the SEPP*

Via the Nanosat Mission Operations Framework (NMF) an experlmenfpcm wse
of a range of services: : :

« Camera, GPS, ADCS, ...
« Ground < space communication

.

For starters, you just want to take some pretty pictures using the satelli’ré'
1. Wait for the ADCS to be available (other experiments moy be using |’r)

2. Point the satellite along your target direction ST
3. Take a picture with the camera

* Satellite Experimental Processing Platform

THALES
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< DEVELOPPING AN OPS-SAT EXPERIMENT 101 >

b -
What you expect: A q
8
N . .
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( DEVELOPPING AN OPS-SAT EXPERIMENT 101 >

-

What you actually get:

@THFILIUM
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( YOU WANT TO DEVELOP AN OPS-SAT APPLICATION >

i-

What happened? N
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A malicious experiment?
starring: The Bad




< ATTACKER'S OBJECTIVES >

T

Take control of OPS-SAT's sensors & actuators, ‘for:l.‘ el

« Disinformation: tamper with camera images, 3 ‘ L $ 3
falsify sensor readings - by

« Destruction: damage the platform and disrupt the ot _
mission "N .

Stay undetected

«  Our malicious code should not be detectable before .« " .° y
upload on the satellite ,
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( PROBLEM #1: STAY UNDETECTED >

Y &
L

' .
Our experiment app relies on the supervisor to access OPS SAT serwces
But our app goes through a review process before runnmg on the real scﬁelh’re
How to evade this? — Find a way to dynamically execu’re shell commonds
Good starting point: experiments can communicate WITh gﬁro‘uhél ’dpbs .dife:cTJ;'/
Possible vectors: '

* Abuse a command execution feature: existing (Common’dE‘xe.cUTor).o'r ad-hoc
. Leverage a vulnerability to exploitit: or ad-hoc.\. *

*Nanosat Mission Operations Framework used for the development of OPS-SAT experiments
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< STAY UNDETECTED: DESERIALIZATION VULNERABILITY >
=
We submiftted an innocuous-looking app '

Derived from a sample NMF app: hello-world-simple

-

It contains no overtly malicious code - #
But there's a slight twist: :

new Parameter("Dummy parameter",  , /*.*/) ! o

This exposes a vulnerability in NMF: « unsafe Java deserialization »
(a call to readObject with attacker-controlled data) A g |
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(STAY UNDETECTED: GROUND APP COMMUNICATES WITH SPACE APP>

: " exp237
- - N uid=1061
= L -
£ G
5 ¢ £
7 ; o
o ground application ground-mo-proxy @
E Q
: 5
o ®
1
; nanosat-mo-
framework
MALSPP (]
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STAY UNDETECTED: LEVERAGING THE SAMPLES CODE BASE

NMF C’ass public SimpleMonitorAndControlaAdapter { ) \ AN
(MCRegistration registrationObject) { < 3 : =
eee ParameterDefinitionDetailsList pddl ParameterDefinitionDetailsList () ; \y
IdentifierList names IdentifierList() ; y
Blob parameter padi.:dd( - ParameterpefinitionDetails( o D P3N
names . ( Identifier( )) s
registrationObject. (names, pddl) ; " - L4
}
.
(String name) {
Attributevalue aval Attributevalue () ; g b gy W . ?xstT
aval. ( UInteger ( )); v uid=1061
aval; ’

(String name, Serializable []srlzbls, I.'qng 1) {
UnsupportedOperationException ( 1) g X .

space segment

(String name, Serializable srlzbl) {

»
UnsupportedOperationException ( ):
Pp = nanosat-mo-

framework
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< STAY UNDETECTED: JAVA DESERIALIZATION VULNERABILITY IN NMF

SimpleMonitorAndControlListener {

UInteger (Identifier identifier, AttributeValuelList attributeValues;
Long actionInstanceObjId, %

reportProgress, MALInteraction interaction) { exp237

uid=1061

Serializable values Serializable attributeValues. O1;

{ i ; i attributeValues. (O; i++) | . . .
AttributeValue attributeValue attributeValues. (i) ; '

(attributevValue. 4] Blob) { .
{ .

Receive the blob T Btoy atteiuceraiii i are it ) N

} (IOException ex) {
values (i attributevalue; // .

space segment

}
} {

values i attributeValue; .

eee } »

public Serializable (Blob obj) { . ' 4
(obj ) | . .
IllegalArgumentException( o yR ' .
} - B
ByteArrayInputStream bis : ‘ Y
object o ;
{
bis ByteArrayInputStream(obj. 0):
ObjectInput in i
{
in ObjectInputStream(bis) ;

Unserialize! B 0
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< STAY UNDETECTED: EXECUTE ARBITRARY COMMANDS AS EXP237 >

-
exp237 0%
- uid=1061 ’ *
[ c - & e ¥ . - . -
£ g . y
& & i S
® L -mo- A
3 ground application MALTCP . ground-mo-proxy g ' Runtime.getRuntime () . ( String {
= o ' e mee
< oy \
o *
- ' ¥
1anosat-mo- in 161 Ogjgp_tlnputstreamwxaced. - -
framework o - in. (02H

_ ’ e 2

value=0xaced...

-
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< STAY UNDETECTED: SUCCESS! >

) o
We leveraged this vulnerability to design a covert chan el i
cooperation with ESA ¢ ' e

« The exploit is sent from a ground app we developed@ d pdroméTer is sen;r to
our space app - :

B

- The malicious parameter payload is routed to space’

o

« Once received by our app, it triggers arbitrary code execu’rlon under ’rhe
identity of our app ! -

« Yet this code doesn't appear in the binary files submi’r-’red for o;ur e_xberi'menf
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< STAY UNDETECTED: UNRESTRICTED PAYLOADS UPLOAD >

Co \ % >
- ST '
THALES : B
Building a future we can all trust _
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< PROBLEM #2: TAKING CONTROL OF THE SEPP >

Y .
. . _ I
Our app runs as an unprivileged Linux user et \

It has no direct access to sensors and actuators, but ’rhough ’rhe-s_uperv'is?'r;

How to take control of them? :
Good starting point: being root yields full privileges O\}er the whole sys"re'm',‘.
Possible vectors: "

* Find system configuration issues

« Exploit a 1-day vulnerability eitheruser-space or kernel
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( TAKING CONTROL: PRIVILEGE ESCALATION FROM USER TO ROOT >
The SEPP’s supervisor controls access to the sensors for NMF opbs =

 [|truns as root

« To take control of the sensors, we take control of ’rhelr go’rekeeper ’rhe s‘perwsor
« To do so, we need to escalate our privileges from our us,er to root

There's an intriguing service running on the SEPP: ‘4 11iroot + * @ ¢

« We grabbed the binary & reverse engineered it :
« It's a client that decodes then executes as root whatever commond it recelves
« Anyone can talk on the CAN bus, including unprivileged apps «

* Thus... any app can send commands for the space-shell-root to run as root ©
(this is OPS-SAT-specific, not NMF-related)
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< TAKING CONTROL: CAN BUS VULNERABILITY >

)
} |

rt_arm_root ‘Q
-
e

i o
o [T
p i)
. g5
1
. r o
g A
- Q. e
7]
n_ »
: )
w . ‘
(7]
supervisor \ . can_spp_bridge
uid=0 Y = uid=0

CAN bus: can0
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TAKING CONTROL: NICE LOOKING FEATURE!
(true) { /] i 7

int32 t n received receiveData (ctreceived, ;, EORSAEt)Es 233
(n_received Rt = N ¥
ciphered ptr received; 2 . " I
xor ptr b (0: 3 A \ ‘ ° i . B
(true) { N S
k xor ptr[0]; . p E
ciphered ptr[0] (k ciphered ptr[0]) . ml :ﬁ;
(ciphered ptr received[ (n_received )1 ). H ‘E o .
xor ptr g a - %
} . - 3' e
received[n received] A © ,
signal (SIGCHLD, /* SIG_IGN */); . ~ X
child = fork(); A
(child ) {
execl ( ’ ] , Lreceived) ;
exit (0) ;
/* no return */ y can_spp_bridge
} . . uid=0
} » K »

"

CAN bus: can0

Cyber Solutions s, Thales T H /\ L E S

we can all trust




TAKING CONTROL: NICE LOOKING FEATURE!
(true) { i'

Received Ddfa int32 t n received receiveData (freceived, . EONS e
(n_received ) { : S
ciphered ptr received; 4 ¢ " I
AQL DLr - XOR KEY; : ' - SR
( ) | : A '
k xor ptr[0];
XORed Wifh key ciphered ptr[0] (4.4 ciphered ptr[0]):;

(ciphered ptr received[ (n_received )1)
. xor ptr 5 .

}
~Teceivedln received] :
signal (SIGCHLD, /* SIG_IGN */); -
child = fork(); A
(child ) {
execl ( ’ ] , Lreceived) ;
Executed asroot! _ 7 ;.

/* no return */ X . 4 can_spp_bridge
}

* ’ uid=0
} : .

-
-
-

rt_arm_root

uid=0

space_po

L

CAN bus: can0
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< TAKING CONTROL: ARBITRARY CODE EXECUTION AS ROOT >

THALES
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payload
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exp235 .
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< PROBLEM #3: PERSISTENCE >

~

Our app escalated as root
How to ensure persistent effects on sensors and actuators 2 $ LN ‘ 1

- ¥

Good starting point. apps use the NMF framework * ' B .

Possible vectors:
» Injectinto or an executable file
« Configure a new job or a new seryice T o
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( PERSISTENCE: Injection of a jar library >

Y o

5 ) h ' »
Supervisor provides experiments with features they need: images, GPS

It adapts standardized interfaces to low-level hardware | Nei : ‘ ,

The jar library is writable by root user
A jaris simply a zip file, with compiled Java bytecode inside

We craft our bytecode based on the original one, and 5|mply reploce some
files inside the jar . S i '
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< TAKING CONTROL: INJECT INTO SUPERVISOR >

THALES

Building a future we can all trust

bytecode |

-
<T
@
(7]
o
o

shell
commands

m
space-
2o . shell-root
Java
exp235 .

CAN

o
®
N
Q
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SUMMARY: FULL ATTACK FLOW

Cyber Solutions s, Thales

Evade code analysis

vulnerability

Take control of the
Supervisor

JAVA Deserialization CAN Bus

vulnerability

JAR Library
Injection

Undetected & persistant control of
OPS-SAT
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Post Exploitation
starring: The Ugly




( DEMO EFFECTS: TAMPERING WITH CAMERA & ADCS >

Root privileges allow us to take control on the |
supervisor: "L . (
. Alter/delete allimages captured by the cameré \ 4

« Override satellite attitude requested by other opp‘s‘

» This also provides persistence for our malicious code
since the supervisor starts early and is almost always -
I’Uﬂﬂll’]g ¢ fff’THnLlun_n

%

Cyber Solutions s, Thales T H /\ L E S

we can all trust



( OTHER POTENTIAL EFFECTS >

-

Non-demonstrated possible effects:
« Shufting down services used by other expenmen’rs .
« Draining the batteries by maintaining an unfovourobJe O’rh’rude
« Tampering with GPS coordinates
« Spying on other experiments data
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Key takeaways
or Why it isn’t all that bad... but it could well become so




(NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION>
ESA supervised our tests and retained control throughout Thé detnr.w.o' N ’ . '
The SEPP can only conirol most of OPS-SAT... ' '

. as long as the BUS* allows if : ' S .

ESA’s design ensures they can always safely reset ’rhe SEPP and restore it ’ro o
known-good state through a simple TC ! :

The BUS also monitors the satellite’s state to prevent |T from becommg
irecoverable N

* Core OPS-SAT component that can’t be overridden by the SEPP
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(NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION>

The attack scenario is built upon non-trivial requirements |

he
.

Code execution for random users is a specific feature of OPS-SAT!

Probably less so on non-experimental spacecraf®©

We also had access to the SEPP system image:

« Directly as it was provided to us by ESA as part df our cooperation
« Indirectly during our tests on the FlatSat : ' |

' o : Pe 7
ESA is in the process of fixing the vulnerabilities we uncovered ™
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<NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION>
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< IMPLICATIONS BEYOND OPS-SAT >

Satellites are key elements in numerous critical systems: .

-

« Telecommunication
 Earth surveillance
« Positioning (Galileo, GPS...)

Satellite compromise can lead to:
« Service disruption ‘
- Unreliable/tampered data fransmission AL v %
« Confidential data leaks |

Especially true if the compromise remains undetected!
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Risk Mitigation
or How to make sure this won’t happen to you




< MITIGATING RISK - PREVENTION >

e
Design with security in mind: K 3 \*
«  Build threat model (e.g. MITRE ATT&CK] 3
« Harden systems (e.g. CIS benchmark and RedHoT'STIG)
. Isolate tasks (e.g. SELinux) Ee e -

« Grant least amount of privileges . N N
Code review

Red-team designs & implementations
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< MITIGATING RISK - DETECTION >

~

Satellite status monitoring | | '
Filesystem integrity checks ) , } ’
Log collection | .

Network monitoring
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< THANKS! TIME FOR Q&A! >

Thank you for you attention! K, 3 \*
)
Heartfelt thanks to the whole OPS-SAT team at | e N ;
ESA for supporting us in this thrilling endeavour ©" AR T
Any questions? THALES
Building a future we can all trust | :
@THAUUM ST o
ThalesAlenia

a Thales / Leonardo company
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