THALES

Building a future we can all trust

FIRST WORLDWIDE HACKING DEMO
OF AN IN-ORBIT SATELLITE

TRADING AN EXPERIMENT FOR A WHOLE OPS-SAT

< AGENDA >

The Team
The Context .
Experimenters’ side (The Good) Ee e ‘
Attackers’ side (The Bad)
Post Exploitation (The Ugly)

~

Key takeaways

Mitigation strategies

Cyber Solutions s, Thales T H /\ L E S

we can all trust

(THE TEAM >

In order of appearance:

~

Brian: Cyber Security Evaluator @ Thales ITSEF

-

Quentin: Reverse Engineer @ Thalium

Guillaume: Reverse Engineer @ Thalium - : o ‘

Arnaud: Reverse Engineer @ Thalium ‘4 .-) f'

Thalium: Thales laboratory dedicated to cyberdefense offenslve secunTy
vulnerabilities assessment and Red Team activities O e '

Thales ITSEF: Thales' Information Technology Security Evaluation Facility,
specialized in independent security evaluation of components and embedded
systems

Cyber Solutions s, Thales T H /\ L E S

we can all trust

< A BIT OF CONTEXT >

Thales's offensive cybersecurity team took part in the
Hack CYSAT 2023 challenge -

Objective: identify vulnerabilities on-board OPS-SAT
that could enable malicious actors to disrupt so’relh’re ’
mission operations

The results of the challenge will be used to:

- Tighten satellite security and its on-board
applications

- Improve the cyber resilience of space systems

- Support the long-term success of space
programmes

Cyber Solutions s, Thales T H /\ L E S

we can all trust

THALES

Building a future we can all trust

Experimenter’'s access to OPS-SAT
starring: The Good, An Innocent Experimente

(DEVELOPPING AN OPS-SAT EXPERIMENT 101 >

Experiments on OPS-SAT run on the SEPP*

Via the Nanosat Mission Operations Framework (NMF) an experlmenfpcm wse
of a range of services: : :

« Camera, GPS, ADCS, ...
« Ground < space communication

.

For starters, you just want to take some pretty pictures using the satelli’ré'
1. Wait for the ADCS to be available (other experiments moy be using |’r)

2. Point the satellite along your target direction ST
3. Take a picture with the camera

* Satellite Experimental Processing Platform

THALES

Cyber Solutions s, Thales

we can all trust

< DEVELOPPING AN OPS-SAT EXPERIMENT 101 >

b -
What you expect: A q
8
N . .
v
(TSN
\)7\ '
&
K

Cyber Solutions s, Thales T H A L E S

we can all trust

(DEVELOPPING AN OPS-SAT EXPERIMENT 101 >

-

What you actually get:

@THFILIUM

Cyber Solutions s, Thales T H /\ L E S

we can all trust

(YOU WANT TO DEVELOP AN OPS-SAT APPLICATION >

i-

What happened? N

Cyber Solutions s, Thales T H /\ L E S

we can all trust

THALES

Building a future we can all trust

A malicious experiment?
starring: The Bad

< ATTACKER'S OBJECTIVES >

T

Take control of OPS-SAT's sensors & actuators, ‘for:l.‘ el

« Disinformation: tamper with camera images, 3 ‘ L $ 3
falsify sensor readings - by

« Destruction: damage the platform and disrupt the ot _
mission "N .

Stay undetected

« Our malicious code should not be detectable before .« " .° y
upload on the satellite ,

Cyber Solutions s, Thales T H /\ L E S

we can all trust

ITHALES

I Building a future we can all trust

l
| exp237

e e e o o - -

OPS-SAT

esa

Cyber Solutions sy Thales T H /\ L E S

we can all trust

(PROBLEM #1: STAY UNDETECTED >

Y &
L

' .
Our experiment app relies on the supervisor to access OPS SAT serwces
But our app goes through a review process before runnmg on the real scﬁelh’re
How to evade this? — Find a way to dynamically execu’re shell commonds
Good starting point: experiments can communicate WITh gﬁro‘uhél ’dpbs .dife:cTJ;'/
Possible vectors: '

* Abuse a command execution feature: existing (Common’dE‘xe.cUTor).o'r ad-hoc
. Leverage a vulnerability to exploitit: or ad-hoc.\. *

*Nanosat Mission Operations Framework used for the development of OPS-SAT experiments

Cyber Solutions s, Thales T H /\ L E S

we can all trust

< STAY UNDETECTED: DESERIALIZATION VULNERABILITY >
=
We submiftted an innocuous-looking app '

Derived from a sample NMF app: hello-world-simple

-

It contains no overtly malicious code - #
But there's a slight twist: :

new Parameter("Dummy parameter", , /*.*/) ! o

This exposes a vulnerability in NMF: « unsafe Java deserialization »
(a call to readObject with attacker-controlled data) A g |

Cyber Solutions s, Thales T H /\ L E S

we can all trust

(STAY UNDETECTED: GROUND APP COMMUNICATES WITH SPACE APP>

: " exp237
- - N uid=1061
= L -
£ G
5 ¢ £
7 ; o
o ground application ground-mo-proxy @
E Q
: 5
o ®
1
; nanosat-mo-
framework
MALSPP (]

Cyber Solutions sy Thales T H /\ L E S

we can all trust

STAY UNDETECTED: LEVERAGING THE SAMPLES CODE BASE

NMF C’ass public SimpleMonitorAndControlaAdapter {) \ AN
(MCRegistration registrationObject) { < 3 : =
eee ParameterDefinitionDetailsList pddl ParameterDefinitionDetailsList () ; \y
IdentifierList names IdentifierList() ; y
Blob parameter padi.:dd(- ParameterpefinitionDetails(o D P3N
names . (Identifier()) s
registrationObject. (names, pddl) ; " - L4
}
.
(String name) {
Attributevalue aval Attributevalue () ; g b gy W . ?xstT
aval. (UInteger ()); v uid=1061
aval; ’

(String name, Serializable []srlzbls, I.'qng 1) {
UnsupportedOperationException (1) g X .

space segment

(String name, Serializable srlzbl) {

»
UnsupportedOperationException ():
Pp = nanosat-mo-

framework

Cyber Solutions s, Thales T H A L E 5

we can all trust

< STAY UNDETECTED: JAVA DESERIALIZATION VULNERABILITY IN NMF

SimpleMonitorAndControlListener {

UInteger (Identifier identifier, AttributeValuelList attributeValues;
Long actionInstanceObjId, %

reportProgress, MALInteraction interaction) { exp237

uid=1061

Serializable values Serializable attributeValues. O1;

{ i ; i attributeValues. (O; i++) | . . .
AttributeValue attributeValue attributeValues. (i) ; '

(attributevValue. 4] Blob) { .
{ .

Receive the blob T Btoy atteiuceraiii i are it) N

} (IOException ex) {
values (i attributevalue; // .

space segment

}
} {

values i attributeValue; .

eee } »

public Serializable (Blob obj) { . ' 4
(obj) | . .
IllegalArgumentException(o yR ' .
} - B
ByteArrayInputStream bis : ‘ Y
object o ;
{
bis ByteArrayInputStream(obj. 0):
ObjectInput in i
{
in ObjectInputStream(bis) ;

Unserialize! B 0

Cyber Solutions s, Thales T H /\ L E S

we can all trust

< STAY UNDETECTED: EXECUTE ARBITRARY COMMANDS AS EXP237 >

-
exp237 0%
- uid=1061 ’ *
[c - & e ¥ . - . -
£ g . y
& & i S
® L -mo- A
3 ground application MALTCP . ground-mo-proxy g ' Runtime.getRuntime () . (String {
= o ' e mee
< oy \
o *
- ' ¥
1anosat-mo- in 161 Ogjgp_tlnputstreamwxaced. - -
framework o - in. (02H

_ ’ e 2

value=0xaced...

-

Cyber Solutions sy Thales T H A L E S

we can all trust

< STAY UNDETECTED: SUCCESS! >

) o
We leveraged this vulnerability to design a covert chan el i
cooperation with ESA ¢ ' e

« The exploit is sent from a ground app we developed@ d pdroméTer is sen;r to
our space app - :

B

- The malicious parameter payload is routed to space’

o

« Once received by our app, it triggers arbitrary code execu’rlon under ’rhe
identity of our app ! -

« Yet this code doesn't appear in the binary files submi’r-’red for o;ur e_xberi'menf

Cyber Solutions s, Thales T H /\ L E S

we can all trust

< STAY UNDETECTED: UNRESTRICTED PAYLOADS UPLOAD >

Co \ % >
- ST '
THALES : B
Building a future we can all trust _
™ -
-
' :
payload 8 '
.

/

exp236

-
pe -

OPS-SAT

.

bl . {'\e}”t.‘
l_’ IS ,i?@'
ot N
‘.
ADCS
Ny . * W 7
. F 4
o JLESR

id
.
-

o
®
N
Q

Cyber Solutions sy Thales T H /\ L E S

we can all trust

< PROBLEM #2: TAKING CONTROL OF THE SEPP >

Y .
. . _ I
Our app runs as an unprivileged Linux user et \

It has no direct access to sensors and actuators, but ’rhough ’rhe-s_uperv'is?'r;

How to take control of them? :
Good starting point: being root yields full privileges O\}er the whole sys"re'm',‘.
Possible vectors: "

* Find system configuration issues

« Exploit a 1-day vulnerability eitheruser-space or kernel

Cyber Solutions s, Thales T H /\ L E S

we can all trust

(TAKING CONTROL: PRIVILEGE ESCALATION FROM USER TO ROOT >
The SEPP’s supervisor controls access to the sensors for NMF opbs =

 [|truns as root

« To take control of the sensors, we take control of ’rhelr go’rekeeper ’rhe s‘perwsor
« To do so, we need to escalate our privileges from our us,er to root

There's an intriguing service running on the SEPP: ‘4 11iroot + * @ ¢

« We grabbed the binary & reverse engineered it :
« It's a client that decodes then executes as root whatever commond it recelves
« Anyone can talk on the CAN bus, including unprivileged apps «

* Thus... any app can send commands for the space-shell-root to run as root ©
(this is OPS-SAT-specific, not NMF-related)

Cyber Solutions s, Thales T H /\ L E S

we can all trust

< TAKING CONTROL: CAN BUS VULNERABILITY >

)
} |

rt_arm_root ‘Q
-
e

i o
o [T
p i)
. g5
1
. r o
g A
- Q. e
7]
n_ »
:)
w . ‘
(7]
supervisor \ . can_spp_bridge
uid=0 Y = uid=0

CAN bus: can0

Cyber Solutions -, Thales THALES

we can all trust

TAKING CONTROL: NICE LOOKING FEATURE!
(true) { /] i 7

int32 t n received receiveData (ctreceived, ;, EORSAEt)Es 233
(n_received Rt = N ¥
ciphered ptr received; 2 . " I
xor ptr b (0: 3 A \ ‘ ° i . B
(true) { N S
k xor ptr[0]; . p E
ciphered ptr[0] (k ciphered ptr[0]) . ml :ﬁ;
(ciphered ptr received[(n_received)1). H ‘E o .
xor ptr g a - %
} . - 3' e
received[n received] A © ,
signal (SIGCHLD, /* SIG_IGN */); . ~ X
child = fork(); A
(child) {
execl (’] , Lreceived) ;
exit (0) ;
/* no return */ y can_spp_bridge
} . . uid=0
} » K »

"

CAN bus: can0

Cyber Solutions s, Thales T H /\ L E S

we can all trust

TAKING CONTROL: NICE LOOKING FEATURE!
(true) { i'

Received Ddfa int32 t n received receiveData (freceived, . EONS e
(n_received) { : S
ciphered ptr received; 4 ¢ " I
AQL DLr - XOR KEY; : ' - SR
() | : A '
k xor ptr[0];
XORed Wifh key ciphered ptr[0] (4.4 ciphered ptr[0]):;

(ciphered ptr received[(n_received)1)
. xor ptr 5 .

}
~Teceivedln received] :
signal (SIGCHLD, /* SIG_IGN */); -
child = fork(); A
(child) {
execl (’] , Lreceived) ;
Executed asroot! _ 7 ;.

/* no return */ X . 4 can_spp_bridge
}

* ’ uid=0
} : .

-
-
-

rt_arm_root

uid=0

space_po

L

CAN bus: can0

Cyber Solutions s, Thales T H A L E S

we can all trust

< TAKING CONTROL: ARBITRARY CODE EXECUTION AS ROOT >

THALES

Building a future we can all trust

payload

exp236 .
exp235 .

-
<T
@
(7]
o
o

o
®
N
Q

Cyber Solutions sy Thales T H /\ L E S

we can all trust

< PROBLEM #3: PERSISTENCE >

~

Our app escalated as root
How to ensure persistent effects on sensors and actuators 2 $ LN ‘ 1

- ¥

Good starting point. apps use the NMF framework * ' B .

Possible vectors:
» Injectinto or an executable file
« Configure a new job or a new seryice T o

Cyber Solutions s, Thales T H /\ L E S

we can all trust

(PERSISTENCE: Injection of a jar library >

Y o

5) h ' »
Supervisor provides experiments with features they need: images, GPS

It adapts standardized interfaces to low-level hardware | Nei : ‘ ,

The jar library is writable by root user
A jaris simply a zip file, with compiled Java bytecode inside

We craft our bytecode based on the original one, and 5|mply reploce some
files inside the jar . S i '

Cyber Solutions s, Thales T H /\ L E S

we can all trust

< TAKING CONTROL: INJECT INTO SUPERVISOR >

THALES

Building a future we can all trust

bytecode |

-
<T
@
(7]
o
o

shell
commands

m
space-
2o . shell-root
Java
exp235 .

CAN

o
®
N
Q

Cyber Solutions sy Thales T H /\ L E S

we can all trust

SUMMARY: FULL ATTACK FLOW

Cyber Solutions s, Thales

Evade code analysis

vulnerability

Take control of the
Supervisor

JAVA Deserialization CAN Bus

vulnerability

JAR Library
Injection

Undetected & persistant control of
OPS-SAT

THALES

we can all trust

THALES

Building a future we can all trust

Post Exploitation
starring: The Ugly

(DEMO EFFECTS: TAMPERING WITH CAMERA & ADCS >

Root privileges allow us to take control on the |
supervisor: "L . (
. Alter/delete allimages captured by the cameré \ 4

« Override satellite attitude requested by other opp‘s‘

» This also provides persistence for our malicious code
since the supervisor starts early and is almost always -
I’Uﬂﬂll’]g ¢ fff’THnLlun_n

%

Cyber Solutions s, Thales T H /\ L E S

we can all trust

(OTHER POTENTIAL EFFECTS >

-

Non-demonstrated possible effects:
« Shufting down services used by other expenmen’rs .
« Draining the batteries by maintaining an unfovourobJe O’rh’rude
« Tampering with GPS coordinates
« Spying on other experiments data

Cyber Solutions s, Thales T H /\ L E S

we can all trust

THALES

Building a future we can all trust

Key takeaways
or Why it isn’t all that bad... but it could well become so

(NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION>
ESA supervised our tests and retained control throughout Thé detnr.w.o' N ’ . '
The SEPP can only conirol most of OPS-SAT... ' '

. as long as the BUS* allows if : ' S .

ESA’s design ensures they can always safely reset ’rhe SEPP and restore it ’ro o
known-good state through a simple TC ! :

The BUS also monitors the satellite’s state to prevent |T from becommg
irecoverable N

* Core OPS-SAT component that can’t be overridden by the SEPP

Cyber Solutions s, Thales T H /\ L E S

we can all trust

(NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION>

The attack scenario is built upon non-trivial requirements |

he
.

Code execution for random users is a specific feature of OPS-SAT!

Probably less so on non-experimental spacecraf®©

We also had access to the SEPP system image:

« Directly as it was provided to us by ESA as part df our cooperation
« Indirectly during our tests on the FlatSat : ' |

' o : Pe 7
ESA is in the process of fixing the vulnerabilities we uncovered ™

Cyber Solutions s, Thales T H /\ L E S

we can all trust

<NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION>

THALES LAk k '

Building a future we can all trust ¥

iR

-

»

b
-
-

»

-

-
id

.

.
*

]

SEPP

-
<T
@
(7]
o
o

.

. ——

" {* * - ;

"R «ﬁ "
; = .
":’.i 2 i : ¥

ADCS ’
Ky 9 ¥

’ L3 4

.

.
. m
‘-
-
e

o
®
N
Q

Cyber Solutions sy Thales T H /\ L E S

we can all trust

< IMPLICATIONS BEYOND OPS-SAT >

Satellites are key elements in numerous critical systems: .

-

« Telecommunication
 Earth surveillance
« Positioning (Galileo, GPS...)

Satellite compromise can lead to:
« Service disruption ‘
- Unreliable/tampered data fransmission AL v %
« Confidential data leaks |

Especially true if the compromise remains undetected!

Cyber Solutions s, Thales T H /\ L E S

we can all trust

THALES

Building a future we can all trust

Risk Mitigation
or How to make sure this won’t happen to you

< MITIGATING RISK - PREVENTION >

e
Design with security in mind: K 3 *
« Build threat model (e.g. MITRE ATT&CK] 3
« Harden systems (e.g. CIS benchmark and RedHoT'STIG)
. Isolate tasks (e.g. SELinux) Ee e -

« Grant least amount of privileges . N N
Code review

Red-team designs & implementations

Cyber Solutions s, Thales T H /\ L E S

we can all trust

< MITIGATING RISK - DETECTION >

~

Satellite status monitoring | | '
Filesystem integrity checks) , } ’
Log collection | .

Network monitoring

Cyber Solutions s, Thales T H /\ L E S

we can all trust

< THANKS! TIME FOR Q&A! >

Thank you for you attention! K, 3 *
)
Heartfelt thanks to the whole OPS-SAT team at | e N ;
ESA for supporting us in this thrilling endeavour ©" AR T
Any questions? THALES
Building a future we can all trust | :
@THAUUM ST o
ThalesAlenia

a Thales / Leonardo company

Cyber Solutions s, Thales T H /\ L E S

we can all trust

	Diapositive 1
	Diapositive 2 AGENDA
	Diapositive 3 THE TEAM
	Diapositive 4 A BIT OF CONTEXT
	Diapositive 5
	Diapositive 6 DEVELOPPING AN OPS-SAT EXPERIMENT 101
	Diapositive 7 DEVELOPPING AN OPS-SAT EXPERIMENT 101
	Diapositive 8 DEVELOPPING AN OPS-SAT EXPERIMENT 101
	Diapositive 9 YOU WANT TO DEVELOP AN OPS-SAT APPLICATION
	Diapositive 10
	Diapositive 11 ATTACKER’S OBJECTIVES
	Diapositive 12 THALES DEMO OBJECTIVE : TAKING CONTROL OF THE SENSORS
	Diapositive 13 PROBLEM #1: STAY UNDETECTED
	Diapositive 14 STAY UNDETECTED: DESERIALIZATION VULNERABILITY
	Diapositive 15 STAY UNDETECTED: GROUND APP COMMUNICATES WITH SPACE APP
	Diapositive 16 STAY UNDETECTED: LEVERAGING THE SAMPLES CODE BASE
	Diapositive 17 STAY UNDETECTED: JAVA DESERIALIZATION VULNERABILITY IN NMF
	Diapositive 18 STAY UNDETECTED: EXECUTE ARBITRARY COMMANDS AS EXP237
	Diapositive 19 STAY UNDETECTED: SUCCESS!
	Diapositive 20 STAY UNDETECTED: UNRESTRICTED PAYLOADS UPLOAD
	Diapositive 21 PROBLEM #2: TAKING CONTROL OF THE SEPP
	Diapositive 22 TAKING CONTROL: PRIVILEGE ESCALATION FROM USER TO ROOT
	Diapositive 23 TAKING CONTROL: CAN BUS VULNERABILITY
	Diapositive 24 TAKING CONTROL: NICE LOOKING FEATURE!
	Diapositive 25 TAKING CONTROL: NICE LOOKING FEATURE!
	Diapositive 29 TAKING CONTROL: ARBITRARY CODE EXECUTION AS ROOT
	Diapositive 30 PROBLEM #3: PERSISTENCE
	Diapositive 31 PERSISTENCE: Injection of a jar library
	Diapositive 32 TAKING CONTROL: INJECT INTO SUPERVISOR
	Diapositive 33 SUMMARY: FULL ATTACK FLOW
	Diapositive 34
	Diapositive 35 DEMO EFFECTS: TAMPERING WITH CAMERA & ADCS
	Diapositive 36 OTHER POTENTIAL EFFECTS
	Diapositive 37
	Diapositive 38 NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION
	Diapositive 39 NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION
	Diapositive 40 NO SATELLITES WERE HARMED IN THE MAKING OF THIS PRESENTATION
	Diapositive 41 IMPLICATIONS BEYOND OPS-SAT
	Diapositive 42
	Diapositive 43 MITIGATING RISK - PREVENTION
	Diapositive 45 MITIGATING RISK – DETECTION
	Diapositive 47 THANKS! TIME FOR Q&A!

